國家衛生研究院 NHRI:Item 3990099045/12586
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 910628      線上人數 : 840
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12586


    題名: Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations
    作者: Ho, CC;Chen, YC;Yet, SF;Weng, CY;Tsai, HT;Hsu, JF;Lin, P
    貢獻者: National Institute of Environmental Health Sciences;Institute of Cellular and Systems Medicine
    摘要: Exposure to ambient fine particulate matter (PM2.5) has been associated with vascular diseases in epidemiological studies. We have demonstrated previously that exposure to ambient PM2.5 caused pulmonary vascular remodeling in mice and increased vascular smooth muscle cells (VSMCs) viability. Here, we further demonstrated that exposure of mice to ambient PM2.5 increased urinary 8hydroxy2'deoxyguanosine (8-OHdG) and cytokines concentrations in the broncheoalveolar lavage. The objective of the present study was to identify the PM2.5 components related to vascular dysfunction. Exposure to PM2.5 collected from various areas and seasons in Taiwan significantly increased viability, oxidative stress, and inflammatory cytokines secretion in VSMCs. The mass concentrations of benz[a]anthracene (BaA), benzo[e]pyrene (BeP), perylene, dibenzo[a,e]pyrene, molybdenum, zinc (Zn), vanadium (V), and nickel in the PM2.5 were significantly associated with increased viability of VSMCs. These components, except BaA and BeP, also were significantly associated with chemokine (CC motif) ligand 5 (CCL5) concentrations in the VSMCs. The effects of V and Zn on cell viability and CCL5 expression, respectively, were verified. In addition, the mass concentrations of sulfate and manganese (Mn) in PM2.5 were significantly correlated with increased oxidative stress; this correlation was also confirmed. After extraction, the inorganic fraction of PM2.5 increased cell viability and oxidative stress, but the organic fraction of PM2.5 increased only cell viability, which was inhibited by an aryl hydrocarbon receptor antagonist. These data suggest that controlling the emission of Zn, V, Mn, sulfate, and PAHs may prevent the occurrence of PM2.5-induced vascular diseases.
    日期: 2020-06-01
    關聯: Science of the Total Environment. 2020 Jun 1;719:Article number 137243.
    Link to: http://dx.doi.org/10.1016/j.scitotenv.2020.137243
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0048-9697&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000521936300070
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85081000898
    顯示於類別:[林嬪嬪] 期刊論文
    [陳裕政] 期刊論文
    [林秀芳] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    PUB32147111.pdf2568KbAdobe PDF311檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋