國家衛生研究院 NHRI:Item 3990099045/12938
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 857645      在线人数 : 705
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12938


    题名: Kriging-based land-use regression models that use machine learning algorithms to estimate the monthly BTEX concentration
    作者: Hsu, CY;Zeng, YT;Chen, YC;Chen, MJ;Lung, SCC;Wu, CD
    贡献者: National Institute of Environmental Health Sciences
    摘要: This paper uses machine learning to refine a Land-use Regression (LUR) model and to estimate the spatial–temporal variation in BTEX concentrations in Kaohsiung, Taiwan. Using the Taiwanese Environmental Protection Agency (EPA) data of BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations from 2015 to 2018, which includes local emission sources as a result of Asian cultural characteristics, a new LUR model is developed. The 2019 data was then used as external data to verify the reliability of the model. We used hybrid Kriging-land-use regression (Hybrid Kriging-LUR) models, geographically weighted regression (GWR), and two machine learning algorithms—random forest (RF) and extreme gradient boosting (XGBoost)—for model development. Initially, the proposed Hybrid Kriging-LUR models explained each variation in BTEX from 37% to 52%. Using machine learning algorithms (XGBoost) increased the explanatory power of the models for each BTEX, between 61% and 79%. This study compared each combination of the Hybrid Kriging-LUR model and (i) GWR, (ii) RF, and (iii) XGBoost algorithm to estimate the spatiotemporal variation in BTEX concentration. It is shown that a combination of Hybrid Kriging-LUR and the XGBoost algorithm gives better performance than other integrated methods.
    日期: 2020-09-23
    關聯: International Journal of Environmental Research and Public Health. 2020 Sep 23;17(19):Article number 6956.
    Link to: http://dx.doi.org/10.3390/ijerph17196956
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000586476700001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85091388143
    显示于类别:[陳裕政] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85091388143.pdf4633KbAdobe PDF261检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈