國家衛生研究院 NHRI:Item 3990099045/13169
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12189/12972 (94%)
造访人次 : 955118      在线人数 : 591
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13169


    题名: Development of MOF reinforcement for structural stability and toughness enhancement of biodegradable bioinks
    作者: Hsieh, CT;Ariga, K;Shrestha, LK;Hsu, SH
    贡献者: Institute of Cellular and Systems Medicine
    摘要: Three-dimensional (3D) bioprinting is a technology that can precisely fabricate customized tissues and organs. Hydrogel materials that can embed living cells for use in 3D printing are called bioinks. However, there are only limited options of bioinks currently because they require the following features at once, such as printability, repetitive layer-by-layer stacking (stackability), structure stabilization, and biological properties. A polyurethane-gelatin double network hydrogel bioink was previously reported to own tunable modulus through changing the solid content, but cell viability at the high solid content is inevitably reduced. In the present study, the reinforcement effects of a metal-organic framework (MOF), zeolitic imidazolate framework-8 (ZIF-8), in the PUG bioink were evaluated. The printability, stackability, thermoresponsiveness, and shear-thinning behavior of the PUG-ZIF-8 composite hydrogels were examined. It was found that the PUG composite hydrogel containing 1250 μg/mL ZIF-8 crystals showed significant structural stability and modulus enhancement (∼2.5-fold). However, the PUG bioink containing 1250 μg/mL ZIF-8 crystals may lead to cell senescence or death. The cytocompatible concentration of ZIF-8 crystals in the bioink was about 875 μg/mL, and this concentration was much higher than the reported tolerable amount (∼50 μg/mL) of ZIF-8 for biomedical applications. The strong reinforcement effect of ZIF-8 and the drug-loading/sensing possibilities of MOFs may open new opportunities for using MOFs in 3D bioprinting applications.
    日期: 2021-03
    關聯: Biomacromolecules. 2021 Mar;22(3):1053-1064.
    Link to: http://dx.doi.org/10.1021/acs.biomac.0c00920
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1525-7797&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000627592800002
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099663758
    显示于类别:[徐善慧] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85099663758.pdf9134KbAdobe PDF226检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈