國家衛生研究院 NHRI:Item 3990099045/13169
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 967903      線上人數 : 825
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13169


    題名: Development of MOF reinforcement for structural stability and toughness enhancement of biodegradable bioinks
    作者: Hsieh, CT;Ariga, K;Shrestha, LK;Hsu, SH
    貢獻者: Institute of Cellular and Systems Medicine
    摘要: Three-dimensional (3D) bioprinting is a technology that can precisely fabricate customized tissues and organs. Hydrogel materials that can embed living cells for use in 3D printing are called bioinks. However, there are only limited options of bioinks currently because they require the following features at once, such as printability, repetitive layer-by-layer stacking (stackability), structure stabilization, and biological properties. A polyurethane-gelatin double network hydrogel bioink was previously reported to own tunable modulus through changing the solid content, but cell viability at the high solid content is inevitably reduced. In the present study, the reinforcement effects of a metal-organic framework (MOF), zeolitic imidazolate framework-8 (ZIF-8), in the PUG bioink were evaluated. The printability, stackability, thermoresponsiveness, and shear-thinning behavior of the PUG-ZIF-8 composite hydrogels were examined. It was found that the PUG composite hydrogel containing 1250 μg/mL ZIF-8 crystals showed significant structural stability and modulus enhancement (∼2.5-fold). However, the PUG bioink containing 1250 μg/mL ZIF-8 crystals may lead to cell senescence or death. The cytocompatible concentration of ZIF-8 crystals in the bioink was about 875 μg/mL, and this concentration was much higher than the reported tolerable amount (∼50 μg/mL) of ZIF-8 for biomedical applications. The strong reinforcement effect of ZIF-8 and the drug-loading/sensing possibilities of MOFs may open new opportunities for using MOFs in 3D bioprinting applications.
    日期: 2021-03
    關聯: Biomacromolecules. 2021 Mar;22(3):1053-1064.
    Link to: http://dx.doi.org/10.1021/acs.biomac.0c00920
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1525-7797&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000627592800002
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099663758
    顯示於類別:[徐善慧] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85099663758.pdf9134KbAdobe PDF226檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋