國家衛生研究院 NHRI:Item 3990099045/14867
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 915224      在线人数 : 1350
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版
    國家衛生研究院 NHRI > 癌症研究所 > 其他 > 期刊論文 >  Item 3990099045/14867


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14867


    题名: Deep-learning based breast cancer detection for cross-staining histopathology images
    作者: Huang, PW;Ouyang, H;Hsu, BY;Chang, YR;Lin, YC;Chen, YA;Hsieh, YH;Fu, CC;Li, CF;Lin, CH;Lin, YY;Chang, MDT;Pai, TW
    贡献者: National Institute of Cancer Research
    摘要: Hematoxylin and eosin (H&E) staining is the gold standard for tissue characterization in routine pathological diagnoses. However, these visible light dyes do not exclusively label the nuclei and cytoplasm, making clear-cut segmentation of staining signals challenging. Currently, fluorescent staining technology is much more common in clinical research for analyzing tissue morphology and protein distribution owing to its advantages of channel independence, multiplex labeling, and the possibility of enabling 3D tissue labeling. Although both H&E and fluorescent dyes can stain the nucleus and cytoplasm for representative tissue morphology, color variation between these two staining technologies makes cross-analysis difficult, especially with computer-assisted artificial intelligence (AI) algorithms. In this study, we applied color normalization and nucleus extraction methods to overcome the variation between staining technologies. We also developed an available workflow for using an H&E-stained segmentation AI model in the analysis of fluorescent nucleic acid staining images in breast cancer tumor recognition, resulting in 89.6% and 80.5% accuracy in recognizing specific tumor features in H&E− and fluorescent-stained pathological images, respectively. The results show that the cross-staining inference maintained the same precision level as the proposed workflow, providing an opportunity for an expansion of the application of current pathology AI models.
    日期: 2023-02
    關聯: Heliyon. 2023 Feb;9(2):Article number e13171.
    Link to: http://dx.doi.org/10.1016/j.heliyon.2023.e13171
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2405-8440&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000969455900001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147371383
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85147371383.pdf8444KbAdobe PDF148检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈