國家衛生研究院 NHRI:Item 3990099045/14867
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 924744      線上人數 : 960
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    國家衛生研究院 NHRI > 癌症研究所 > 其他 > 期刊論文 >  Item 3990099045/14867
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14867


    題名: Deep-learning based breast cancer detection for cross-staining histopathology images
    作者: Huang, PW;Ouyang, H;Hsu, BY;Chang, YR;Lin, YC;Chen, YA;Hsieh, YH;Fu, CC;Li, CF;Lin, CH;Lin, YY;Chang, MDT;Pai, TW
    貢獻者: National Institute of Cancer Research
    摘要: Hematoxylin and eosin (H&E) staining is the gold standard for tissue characterization in routine pathological diagnoses. However, these visible light dyes do not exclusively label the nuclei and cytoplasm, making clear-cut segmentation of staining signals challenging. Currently, fluorescent staining technology is much more common in clinical research for analyzing tissue morphology and protein distribution owing to its advantages of channel independence, multiplex labeling, and the possibility of enabling 3D tissue labeling. Although both H&E and fluorescent dyes can stain the nucleus and cytoplasm for representative tissue morphology, color variation between these two staining technologies makes cross-analysis difficult, especially with computer-assisted artificial intelligence (AI) algorithms. In this study, we applied color normalization and nucleus extraction methods to overcome the variation between staining technologies. We also developed an available workflow for using an H&E-stained segmentation AI model in the analysis of fluorescent nucleic acid staining images in breast cancer tumor recognition, resulting in 89.6% and 80.5% accuracy in recognizing specific tumor features in H&E− and fluorescent-stained pathological images, respectively. The results show that the cross-staining inference maintained the same precision level as the proposed workflow, providing an opportunity for an expansion of the application of current pathology AI models.
    日期: 2023-02
    關聯: Heliyon. 2023 Feb;9(2):Article number e13171.
    Link to: http://dx.doi.org/10.1016/j.heliyon.2023.e13171
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2405-8440&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000969455900001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147371383
    顯示於類別:[其他] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85147371383.pdf8444KbAdobe PDF148檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋