國家衛生研究院 NHRI:Item 3990099045/15834
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 851638      在线人数 : 953
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15834


    题名: Downsizing and soft X-ray tomography for cellular uptake of interpenetrated metal-organic frameworks
    作者: Yu, YS;Liang, YY;Hsieh, CC;Lin, ZJ;Cheng, PH;Cheng, CC;Chen, SP;Lai, LJ;Wu, KCW
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Metal-organic frameworks (MOFs) are porous materials with potential in biomedical applications such as sensing, drug delivery, and radiosensitization. However, how to tune the properties of the MOFs for such applications remains challenging. Herein, we synthesized two MOFs, Zr-PEB and Hf-PEB. Zr-PEB can be classified as porous interpenetrated zirconium frameworks (PIZOFs) and Hf-PEB is its analogue. We controlled their sizes while maintaining their crystal structure by employing a coordination modulation strategy. They were designed to serve as sensitizer for X-ray therapy and as potential drug carriers. Comprehensive characterizations of the MOFs' properties have been conducted, and the in vitro biological impacts have been studied. Since viability assay showed that Hf-PEB was more biocompatible compared to Zr-PEB, the cellular uptake of Hf-PEB by cells was evaluated using both fluorescence microscopy and soft X-ray tomography (SXT), and the three-dimensional structure of Hf-PEB in cells was observed. The results revealed the potential of Zr-PEB and Hf-PEB as nanomaterials for biomedical applications and demonstrated that SXT is an effective tool to assist the development of such materials. Synthesis and downsizing of interpenetrated metal-organic frameworks (MOFs) for biomedical applications. Soft X-ray tomography was applied to characterize the cellular uptake of a MOF by cells.
    日期: 2024-05-03
    關聯: Journal of Materials Chemistry B. 2024 May 03;Article in Press.
    Link to: http://dx.doi.org/10.1039/d4tb00329b
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2050-750X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001217612800001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85193072221
    显示于类别:[吳嘉文] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI001217612800001.pdf4869KbAdobe PDF52检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈