國家衛生研究院 NHRI:Item 3990099045/16766
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12500/13673 (91%)
造访人次 : 2623104      在线人数 : 556
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/16766


    题名: Development of BACE2-IN-1/tranylcypromine-based compounds to induce steroidogenesis-dependent neuroprotection
    作者: Banerjee, S;Hsu, YT;Nguyen, DH;Yeh, SH;Liou, KC;Liu, JJ;Liou, JP;Chuang, JY
    贡献者: NHRI Graduate Student Program;Institute of Biotechnology and Pharmaceutical Research
    摘要: Traumatic brain injury (TBI) constitutes a significant burden on global healthcare systems, especially affecting younger populations, where it is a leading cause of disability and mortality. Current treatments for TBI mainly focus on preventing further brain damage and controlling symptoms. However, despite these approaches, several clinical needs remain unmet. Revelations from single-cell RNA sequencing (scRNA-seq) performed to determine cell-type heterogeneity and gene expression changes in brain tissue indicated that brain trauma increases the expression of lysine-specific demethylase 1 (LSD1) and secretase 2 (BACE2). To capitalize on this finding, a medicinal chemistry campaign was conducted to pragmatically insert tranylcypromine, an LSD1 inhibitor, into a carefully designed BACE2 inhibitory template (BACE2-IN-1). Additionally, tranylcypromine was structurally modified to enhance the effects of LSD1 inhibition in TBI. As a result, a tractable neuroprotective agent, BACE2-IN-1/tranylcypromine-based compound 4, was identified, showing potential to maintain Neuro-2a cell survival by alleviating mitochondrial damage after oxidative stress. Compound 4 also restored TBI-mediated inhibition of the cholesterol biosynthetic pathway (mevalonate pathway) and damage of redox metabolism, increasing neuroprotective effects. Furthermore, behavioral assays, including nest-building and cognitive performance tests, demonstrated significant improvement in mice post-TBI following treatment with compound 4. Taken together, the outcomes of this study validate the favorable effects of inhibiting LSD1 and beta-secretase in mitigating mitochondrial stress and promoting neurometabolic recovery in TBI. These findings pave the way for the development of rationally designed inhibitors as promising neuroprotective agents, potentially addressing unmet clinical needs in TBI treatment.
    日期: 2025-02
    關聯: Biomedicine and Pharmacotherapy. 2025 Feb;183:Article number 117851.
    Link to: http://dx.doi.org/10.1016/j.biopha.2025.117851
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0753-3322&DestApp=IC2JCR
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85215421988
    显示于类别:[葉修華] 期刊論文
    [其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85215421988.pdf9863KbAdobe PDF37检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈