Background:Activating mutations of Fms-like tyrosine kinase 3 (FLT3) constitute a major driver in the pathogenesis of acute myeloid leukaemia (AML). Hence, pharmacological inhibitors of FLT3 are of therapeutic interest for AML.Methods:The effects of inhibition of FLT3 activity by a novel potent FLT3 inhibitor, BPR1J-097, were investigated using in vitro and in vivo assays.Results:The 50% inhibitory concentration (IC(50)) of BPR1J-097 required to inhibit FLT3 kinase activity ranged from 1 to 10 nM, and the 50% growth inhibition concentrations (GC(50)s) were 21+/-7 and 46+/-14 nM for MOLM-13 and MV4-11 cells, respectively. BPR1J-097 inhibited FLT3/signal transducer and activator of transcription 5 phosphorylation and triggered apoptosis in FLT3-driven AML cells. BPR1J-097 also showed favourable pharmacokinetic property and pronounced dose-dependent tumour growth inhibition and regression in FLT3-driven AML murine xenograft models.Conclusion:These results indicate that BPR1J-097 is a novel small molecule FLT-3 inhibitor with promising in vivo anti-tumour activities and suggest that BPR1J-097 may be further developed in preclinical and clinical studies as therapeutics in AML treatments.
Date:
2012-01
Relation:
British Journal of Cancer. 2012 Jan;106(3):475-481.