國家衛生研究院 NHRI:Item 3990099045/7254
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 917786      在线人数 : 1319
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/7254


    题名: Influence of the extracellular matrix stiffness in tissue-engineered constructs on deformed cell shapes under large compressive deformations
    作者: Ben-Or, M;Shoham, N;Lin, FH;Gefen, A
    贡献者: Division of Medical Engineering Research
    摘要: Production of tissue-engineered constructs could sometimes involve delivery of compressive mechanical stimulations to the constructs in order to promote synthesis of extracellular matrix (ECM) components or cell differentiation. Here we developed a set of finite element models to determine how could the ECM/cells stiffness ratio influence the extent of shape distortions of initially round embedded cells, which has been quantified by means of the cell shape index (CSI). We found that below a 12% construct strain threshold, the ECM/cells stiffness ratio did not appear to influence the CSI and hence the extent of cellular distortion in the construct. For greater construct strains, the mean CSI of cells decreased (i.e., cells became more flattened and stretched) quadratically with the level of the global ECM-cell strain. For ECMs that were softer than the cells, the CSI decreased slightly, by no more than 0.1, even under very large construct strains (> 50% strain), so a roughly round or oval cell shape was overall maintained. For stiff ECMs which were 10-times or 100-times stiffer than the embedded cells, the CSI dropped substantially with the extent of global ECM-cell strains, by up to approximately 0.4 and 0.5, respectively, so cells became considerably flattened and stretched. These data are useful for predicting cell shape distortions in construct compression experiments, where ECM/cell stiffness ratios can be empirically evaluated.
    日期: 2013-04
    關聯: Journal of Biomaterials and Tissue Engineering. 2013 Apr;3(2):240-243.
    Link to: http://dx.doi.org/10.1166/jbt.2013.1086
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000317942400010
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84891588071
    显示于类别:[林峯輝] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈